- ERSSON, N.-O. (1976). In Crystallographic Computer Programs, edited by J.-O. LUNDGREN. Report UUIC-B13-4-03. Univ. of Uppsala, Sweden.
- GIESSEN, B. C. & GRANT, N. J. (1965). Acta Cryst. 18, 1080–1081.
- HAVINGA, E. E. (1975). J. Less-Common Met. 41, 241-254.
- KIRKPATRICK, M. E. & LARSEN, W. L. (1961). Trans. Am. Soc. Met. 54, 580–590.
- LUNDGREN, J.-O. (1976). Editor. Crystallographic Computer Programs. Report UUIC-B13-4-03. Univ. of Uppsala, Sweden.
- SANDS, D. E., WOOD, D. H. & RAMSEY, W. J. (1964). Acta Cryst. 17, 986–989.
- SVECHNIKOV, V. N., SHURIN, A. K. & DMITRIYEVA, G. P. (1967). Russ. Metall. Fuels, 6, 95–96.

Acta Cryst. (1978). B34, 3204-3207

The Crystal Structure of Hf₈Ni₂₁

By Lars Bsenko

Institute of Chemistry, University of Uppsala, Box 531, S-751 21 Uppsala, Sweden

(Received 25 May 1978; accepted 3 July 1978)

The crystal structure of the intermetallic phase Hf_8Ni_{21} has been determined from single-crystal X-ray diffraction data. Hf_8Ni_{21} crystallizes in space group PI with Z = 1. The cell parameters are a = 6.4275 (12), b = 8.0007 (15), c = 8.5540 (16) Å, $\alpha = 75.18$ (1), $\beta = 68.14$ (2) and $\gamma = 75.61$ (2)°. A conventional R(F) value of 0.11 was obtained for a full-matrix least-squares refinement, using 1440 independent reflexions. The coordination number for each Hf atom is 15, and for the 11 non-equivalent sets of Ni atoms it varies from 12 to 13. Hf_8Ni_{21} is a high-temperature phase, stable from 1300 ± 20 to 1175 ± 10 °C, where it decomposes eutectoidally into Hf_3Ni_7 and $HfNi_3$ (low-temperature). The relationship between Hf_8Ni_{21} and Zr_2Ni_7 is discussed.

Introduction

Some observations on the Hf–Ni system were reported by Kirkpatrick & Larsen (1961). They stated that a phase of composition Hf_2Ni_5 existed, and from a comparison of the powder diffraction patterns for Hf_2Ni_5 and Zr_2Ni_5 they concluded that the two phases were isostructural. They tentatively indexed Zr_2Ni_5 on the basis of a pseudo-orthorhombic cell but the symmetry in their Weissenberg photographs appeared to be lower than orthorhombic.

Svechnikov, Shurin & Dmitriyeva (1967) found a phase of composition Hf_2Ni_5 which formed peritectically from the melt and $HfNi_3$, but gave no further characterization of this phase. In an investigation of the Hf-Ni system in the region 65–80 at.% Ni, Bsenko (1978*a*) found that the phase denoted Hf_2Ni_5 crystallizes with a triclinic unit cell and that the composition is Hf_8Ni_{21} . The investigation of the crystal structure of Hf_8Ni_{21} is presented in this paper.

Experimental

An alloy of nominal composition $Hf_{0.28}Ni_{0.72}$ was prepared by arc-melting Hf (containing 3% Zr, Koch-Light) and Ni (Specpure, Johnson Matthey & Co. Ltd)

on a water-cooled Cu hearth. Before the alloy was melted, a getter alloy was melted for five minutes in order to remove oxygen and nitrogen from the protecting Ar atmosphere. The alloy was then placed in a ZrO₂ crucible and heat treated under very pure Ar gas in a resistance furnace for 24 h at 1275°C. This heat treatment is necessary since, when the alloy solidifies in the arc-furnace, the crystals of Hf₈Ni₂₁ formed are small and unsuitable for single-crystal Xray work. During the heat treatment at 1275°C the alloy partly melts and the small crystals of Hf₈Ni₂₁ grow larger. After the heat treatment a metallographic examination of the specimen showed large crystals of Hf₈Ni₂₁ surrounded by a fine eutectic consisting of Hf_3Ni_7 and Hf_7Ni_{10} . The sample was then placed in a solution of aqua regia, which dissolved the eutectic matrix leaving a batch of Hf₈Ni₂₁ crystals. Attempts to obtain crystals of Hf₈Ni₂₁ by crushing the sample resulted in severe crystal deformation owing to the great ductility of the phase. A suitable crystal was mounted on a Weissenberg camera and the diffraction symmetry showed the space group to be P1 or $P\overline{1}$.

A powder diffraction photograph was taken of a sample of small crystals of Hf₈Ni₂₁. A Guinier-Hägg camera (Philips XDC 700) with Cu $K\alpha_1$ radiation ($\lambda = 1.54059$ Å) was used. Zone-refined Si (a = 5.43088 Å) was used as internal standard. The powder pattern was

complex but was successfully indexed on the basis of the cell dimensions obtained from the Weissenberg photographs. The cell parameters were chosen to comply with the conditions for a reduced cell as given in *International Tables for X-ray Crystallography* (1969). The unit-cell dimensions were refined using the local program *CELNE* (Ersson, 1976). The intensity collection was performed in the same way as for the HfNi₃ phases (Bsenko, 1978b). The number of reflexions recorded was 1440 and the 2θ limit was 50°.

Refinement of the structure

 F_o^2 and $\sigma(F_o^2)$ were obtained after corrections for background, Lorentz and polarization effects had been applied. An absorption correction was calculated ($\mu =$ 809 cm⁻¹), based on an approximate crystal shape. The crystal was an irregular polyhedron having six boundary planes. The transmission factors varied between 0.02 and 0.25.

The composition of the alloy was first estimated to be Hf_2Ni_5 with 28 atoms in the unit cell, but the resulting mean atomic volume calculated from the refined cell volume was too high. A cell content of 29 atoms results in a more probable mean atomic volume and hence the composition was assumed to be Hf_8Ni_{21} .

A three-dimensional Patterson synthesis was computed and the heights and the number of maxima were in accordance with the assumption that the space group was $P\bar{1}$. From the largest maxima the positions of the eight Hf atoms in the unit cell were obtained. Based on the positional parameters for the Hf atoms, a Fourier synthesis revealed the positions of 11 non-equivalent Ni atoms. A refinement of the structure was performed using the full-matrix least-squares program UPALS (Lundgren, 1976). The function minimized was $w(|F_o|$

Table 1. Final structural parameters for Hf₈Ni₂₁

E.s.d.'s are in units of the least significant digit. Positional parameters are $\times 10^4$, thermal $\times 10^2$.

		x	у	Ζ	B (Å ²)
Hf(1)	2(<i>i</i>)	2487 (3)	620 (3)	1072 (3)	16 (5)
Hf(2)	2(i)	688 (3)	4040 (2)	8150 (2)	7 (5)
Hf(3)	2(i)	4312 (3)	4633 (3)	2543 (3)	14 (5)
Hf(4)	2(i)	2452 (3)	9375 (3)	5340 (2)	10 (5)
Ni(1)	2(i)	1191 (10)	529 (8)	8506 (8)	30 (10)
Ni(2)	2(i)	4824 (10)	2052 (8)	7756 (8)	24 (10)
Ni(3)	2(i)	3193 (10)	2416 (8)	5496 (8)	26 (10)
Ni(4)	2(i)	983 (9)	2587 (7)	3474 (7)	16 (10)
Ni(5)	2(i)	2901 (10)	3905 (8)	278 (8)	31 (10)
Ni(6)	2(i)	3164 (10)	5995 (8)	5365 (8)	34 (10)
Ni(7)	2(i)	1354 (10)	7105 (8)	8439 (8)	31 (10)
Ni(8)	2(i)	3048 (10)	7452 (8)	395 (8)	29 (10)
Ni(9)	2(i)	989 (9)	7821 (7)	3448 (7)	18 (10)
Ni(10)	2(i)	4849 (10)	8825 (8)	7436 (8)	35 (10)
Ni(11)	1(g)	0	$\frac{1}{2}$	$\frac{1}{2}$	5 (11)

 $-|F_c|^2$, with weights according to $w^{-1} = \sigma^2(F_o) - (pF_o)^2$ with p = 0.03. Atomic scattering factors for Hf and Ni were taken from Cromer & Waber (1965), and dispersion correction factors were from Cromer & Liberman (1970). No extinction correction was made. Refinement of one scale factor, 42 positional parameters and 15 isotropic temperature factors yielded an R(F) value of 0.11. In view of the strong absorption and the lack of a good geometrical description of the crystal, refinement of anisotropic temperature factors. The final positional parameters and isotropic temperature factors were final parameters and isotropic temperature factors.

Discussion of the structure

The pseudo-orthorhombic cell dimensions obtained for Zr_2Ni_5 by Kirkpatrick & Larsen (1961) are a = 6.5, b = 10.1 and c = 12.1 Å. The primitive unit cell of Hf_8Ni_{21} can be transformed to a centred triclinic cell by the transformation $\mathbf{a}' = \mathbf{a}$, $\mathbf{b}' = \mathbf{b} - \mathbf{c}$ and $\mathbf{c}' = -\mathbf{a} + \mathbf{b} + \mathbf{c}$, with cell dimensions $\mathbf{a}' = 6.43$, $\mathbf{b}' = 10.11$, $\mathbf{c}' = 12.12$ Å, a' = 96.8, $\beta' = 95.9$ and $\gamma' = 90.7^{\circ}$, which

* A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33757 (8 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. The two layers of the structure of Hf_8Ni_{21} projected on the (100) plane. The Ni(9) atoms are drawn with a thick line. (a) $x \sim 0.25$. (b) $x \sim 0.75$.

probably corresponds to the choice of unit cell that Kirkpatrick & Larsen (1961) made for Zr_2Ni_5 .

The crystal structure of Hf_8Ni_{21} can be described as a stacking of slightly puckered layers of atoms in a sequence repeated after two layers. The structure is best visualized if a transformation of the unit cell is performed according to $\mathbf{a}' = \mathbf{a}, \mathbf{b}' = \mathbf{b}$ and $\mathbf{c}' = \mathbf{a} + \mathbf{c}$. The corresponding cell dimensions are a' = 6.43, b' = 8.00, c' = 12.46 Å, a' = 72.33, $\beta' = 39.58$ and $\gamma' = 75.61^{\circ}$. The two layers composing the structure are parallel to the (100) plane and situated at $x \sim 0.25$ and $x \sim 0.75$. Fig. 1 shows the two layers together with the unit-cell contour drawn at $x = \frac{1}{4}$. Ni(11) is situated between the two layers. The layers can be regarded as

Table 2. Interatomic distances (Å) less than 3.5 Å in Hf₈Ni₂₁

E.s.d.'s are in units of the least significant digit.

$ \begin{array}{c} Hf(2) & 3.485 (2) & Hf(3) & 3.347 (2) & Hf(2) & 3.430 (2) & Hf(4) & 3.461 (3) \\ Hf(4) & 3.498 (2) & Hf(3) & 3.430 (2) & Ni(2) & 2.773 (5) & Hif(4) & 3.461 (3) \\ Ni(1) & 2.611 (5) & Ni(1) & 2.704 (5) & Ni(3) & 2.651 (5) & Ni(1) & 2.844 (5) \\ Ni(2) & 2.647 (5) & Ni(3) & 2.668 (5) & Ni(5) & 2.657 (5) & Ni(3) & 2.779 (5) \\ Ni(2) & 2.632 (5) & Ni(3) & 2.668 (5) & Ni(5) & 2.657 (5) & Ni(3) & 2.779 (5) \\ Ni(4) & 2.653 (5) & Ni(5) & 2.665 (6) & Ni(6) & 2.680 (6) & Ni(4) & 2.830 (5) \\ Ni(6) & 2.595 (6) & Ni(5) & 2.2656 (6) & Ni(6) & 2.718 (5) & Ni(6) & 2.727 (5) \\ Ni(8) & 3.224 (5) & Ni(7) & 2.731 (6) & Ni(8) & 2.683 (5) & Ni(7) & 2.737 (6) \\ Ni(8) & 3.224 (5) & Ni(7) & 2.731 (6) & Ni(8) & 2.683 (5) & Ni(7) & 2.737 (6) \\ Ni(8) & 3.224 (5) & Ni(7) & 2.731 (6) & Ni(8) & 2.683 (5) & Ni(6) & 2.728 (5) \\ Ni(1) & 2.657 (6) & Ni(1) & 2.776 (2) & Ni(10) & 2.651 (5) & Ni(9) & 2.841 (5) \\ Ni(1) & 2.657 (6) & Ni(1) & 2.776 (2) & Ni(10) & 2.651 (5) & Hif(2) & 2.680 (6) \\ Ni(10) & 3.426 (6) & Ni(1) & 2.278 (5) & Hif(4) & 2.651 (5) & Hif(2) & 2.680 (5) \\ Hf(1) & 2.644 (5) & Hf(2) & 2.676 (5) & Hi(3) & 2.775 (5) \\ Hf(1) & 2.644 (5) & Hf(2) & 2.676 (5) & Hi(3) & 2.775 (5) \\ Hf(1) & 2.644 (5) & Hf(2) & 2.673 (5) & Hif(4) & 2.637 (5) & Hif(3) & 2.775 (5) \\ Hf(2) & 2.704 (5) & Hf(2) & 2.676 (5) & Hi(3) & 2.671 (7) & Ni(1) & 2.651 (5) & Hif(2) & 2.480 (5) \\ Hf(2) & 2.697 (7) & Ni(1) & 2.672 (7) & Ni(1) & 2.651 (5) & Hif(2) & 2.480 (5) \\ Ni(2) & -2.697 (7) & Ni(3) & 2.670 (7) & Ni(2) & 2.447 (7) & Ni(6) & 2.578 (7) \\ Ni(3) & 2.662 (7) & Ni(3) & 2.670 (7) & Ni(1) & 2.735 (7) & Ni(10) & 2.578 (7) \\ Ni(6) & 2.480 (7) & Ni(6) & 2.451 (7) & Ni(6) & 2.578 (7) & Ni(6) & 2.559 (7) \\ Ni(7) & 3.398 (7) & Ni(6) & 2.451 (7) & Ni(6) & 2.578 (7) & Ni(6) & 2.533 (7) \\ Ni(8) & 2.492 (7) & Ni(6) & 2.451 (7) & Ni(6) & 2.578 (7) & Ni(6) & 2.548 (7) \\ Ni(7) & 2.731 (7) & Ni(6) & 2.451 (7) & Ni(10) & 2.651 (7) & Ni(10) & 2.539 (7) \\ Ni(8) & 2.490 (7) & Ni(6) & 2.451 (7) & Ni(6) & 2.731 (6) & Hif(1) & 2.622 (5) \\ Hf(3) & 2.696 (6) & Hf(4) & 2.675 (7) & N$	Hf(1)-Hf(1)	3.117 (3)	Hf(2)-Hf(1)	3.485 (2)	Hf(3)-Hf(2)	3.347 (2)	Hf(4) - Hf(1)	3.498(2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Hf(2)	3.485 (2)	Hf(3)	3.347 (2)	Hf(2)	3.430(2)	Hf(4)	3.282 (3)
	Hf(4)	3.498 (2)	Hf(3)	3.430 (2)	Ni(2)	2.773(5)	Hf(4)	3.461 (3)
	Ni(1)	2.611(5)	Ni(1)	2.704 (5)	Ni(3)	2.651(5)	Ni(1)	2.844 (5)
	Ni(1)	2.647 (5)	Ni(2)	2.687 (5)	Ni(4)	2.775(5)	Ni(2)	2.912 (5)
	Ni(2)	2.632 (5)	Ni(3)	2.680(5)	Ni(5)	2.605 (6)	Ni(3)	2.637(5)
	Ni(2)	2.764(5)	Ni(4)	2.850(5)	Ni(5)	2.657 (5)	Ni(3)	2.037(3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ni(4)	2.653 (5)	Ni(5)	2.600(6)	Ni(6)	2.680 (6)	Ni(3)	2.723(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni(5)	2.595(6)	Ni(5)	2.665(6)	Ni(6)	2.718(5)	Ni(4)	2.802 (5)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ni(7)	2.639(5)	$Ni(6) \times 2$	2.676(6)	Ni(7)	2.708(5)	Ni(4)	2.603 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni(8)	2.652(5)	Ni(7)	2.731 (6)	Ni(8)	2.683 (5)	NI(0)	2.024 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni(8)	3.274(5)	Ni(8)	2.679 (5)	Ni(8)	2.083(5)	INI(7) NI(0)	2.737 (0)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ni(9)	2.714(5)	Ni(9)	2.861(5)	Ni(0)	2.056(5)	NI(9)	2 9 2 1 (5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ni(10)	2.657 (6)	Ni(11)	2.001(3) 2.776(2)	Ni(10)	2.550 (5)	NI(9)	2.031(3)
$\begin{array}{c} \mathrm{Ni}(1) - \mathrm{Hi}(1) & 2 \cdot \mathrm{61}(5) & \mathrm{Ni}(2) - \mathrm{Hi}(1) & 2 \cdot \mathrm{62}(5) & \mathrm{Ni}(3) - \mathrm{Hi}(1) & 2 \cdot \mathrm{63}(5) & \mathrm{Ni}(3) - \mathrm{Hi}(1) & 2 \cdot \mathrm{63}(5) & \mathrm{Ni}(3) - \mathrm{Hi}(1) & 2 \cdot \mathrm{63}(5) & \mathrm{Hi}(3) & 2 \cdot \mathrm{73}(5) & \mathrm{Ni}(3) & 2 \cdot \mathrm{73}(5) & \mathrm{Ni}(3) & 2 \cdot \mathrm{73}(5) & \mathrm{Ni}(3) & 2 \cdot \mathrm{73}(7) & \mathrm{Ni}(3) & 2 \cdot \mathrm{64}(2) & 2 \cdot \mathrm{42}(2) & \mathrm{Ni}(1) & 2 \cdot \mathrm{66}(2) & \mathrm{Ni}(3) & 2 \cdot \mathrm{73}(7) & \mathrm{Ni}(6) & 2 \cdot \mathrm{713}(7) & \mathrm{Ni}(6) & 2 \cdot \mathrm{73}(7) & \mathrm{Ni}(1) & 2 \cdot \mathrm{73}(7) & \mathrm{Ni}(6) & 2 \cdot \mathrm{73}(7) & \mathrm{Ni}(1) & 2 \cdot 7$	Ni(10)	3.426(6)	14(11)	2.110(2)	Ni(10)	2.079(0) 2.785(2)	Ni(10)	2.673 (6)
$\begin{split} & N(1) = H(1) & 2 \cdot 631 \ (3) & N(2) = H(1) & 2 \cdot 623 \ (3) & N(3) = H(2) & 2 \cdot 680 \ (5) & N(4) = H(1) & 2 \cdot 625 \ (5) & H(2) & 2 \cdot 680 \ (5) & N(4) = H(1) & 2 \cdot 625 \ (5) & H(2) & 2 \cdot 680 \ (6) & H(2) & 2 \cdot 750 \ (7) & H(4) & 2 \cdot 775 \ (6) \ H(4) & 2 \cdot 723 \ (7) & N(3) & 2 \cdot 447 \ (7) & N(3) & 2 \cdot 447 \ (7) & N(3) & 2 \cdot 447 \ (7) & N(6) & 2 \cdot 432 \ (7) & N(6) & 2 \cdot 433 \ (8) & H(7) & 2 \cdot 433 \ (7) & N(6) & 2 \cdot $	NI(1) IIG(1)	2(11(c))		a (20 (P)		2.105 (2)	141(10)	2.073 (0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1) - H(1)	2.611(5)	Ni(2)-Hf(1)	2.632 (5)	$N_1(3) - Hf(2)$	2.680(5)	Ni(4)-Hf(1)	2.653 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.0/4(5)	HI(I)	2.764 (5)	Hf(3)	2.651 (5)	Hf(2)	2.850 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HI(2)	$2 \cdot 704(5)$	Hf(2)	2.687 (5)	Hf(4)	2.637 (5)	Hf(3)	2.775 (5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HI(4)	2.844 (5)	HI(3)	2.773 (5)	Hf(4)	2.729 (5)	Hf(4)	2.757 (5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NI(1)	2.492 (10)	Ht(4)	2.912 (5)	Ni(1)	2.662 (7)	Hf(4)	2.803 (5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NI(2)	2.697 (7)	Ni(1)	2.697 (7)	Ni(2)	2•447 (7)	Ni(3)	2.578 (7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N1(3)	2.662 (7)	Ni(3)	2.447 (7)	Ni(4)	2.578 (7)	Ni(5)	2.599 (7)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N1(7)	2.723 (7)	Ni(5)	2.670 (7)	Ni(6)	2.713 (7)	Ni(6)	2.545 (7)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ni(7)	3.308 (7)	Ni(6)	2.745 (7)	Ni(6)	2.832 (7)	Ni(7)	2.533 (7)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ni(8)	2.760 (7)	Ni(6)	3.453 (7)	Ni(9)	2.536 (7)	Ni(9)	2.435 (7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni(8)	2-832 (7)	Ni(8)	2·594 (7)	Ni(10)	2.675 (7)	Ni(10)	2.539 (7)
Ni(10) 2.378 (7)Ni(10) 2.662 (7)Ni(11) 2.598 (5)Ni(5)-Hf(1) 2.2378 (6)Ni(6)-Hf(2) 2.676 (6)Ni(7)-Hf(1) 2.639 (5)Ni(8)-Hf(1) 2.652 (5)Hf(2) 2.660 (6)Hf(3) 2.718 (5)Hf(2) 2.731 (6)Hf(1) 3.274 (5)Hf(2) 2.665 (6)Hf(3) 2.718 (5)Hf(2) 2.731 (6)Hf(3) 2.683 (5)Hf(3) 2.665 (6)Hf(4) 2.624 (5)Hf(3) 2.708 (5)Hf(3) 2.683 (5)Hf(3) 2.657 (6)Ni(2) 2.745 (7)Hf(4) 2.757 (6)Hf(3) 3.089 (5)Ni(2) 2.670 (7)Ni(2) 3.453 (7)Ni(1) 2.723 (7)Ni(1) 2.760 (7)Ni(4) 2.599 (7)Ni(3) 2.713 (7)Ni(1) 3.308 (7)Ni(1) 2.832 (7)Ni(4) 2.599 (7)Ni(3) 2.713 (7)Ni(1) 3.308 (7)Ni(2) 2.594 (7)Ni(7) 2.781 (7)Ni(3) 2.832 (7)Ni(4) 2.533 (7)Ni(2) 2.594 (7)Ni(7) 2.805 (8)Ni(6) 2.445 (7)Ni(5) 2.891 (7)Ni(5) 2.891 (7)Ni(8) 2.468 (7)Ni(7) 2.729 (8)Ni(5) 2.891 (7)Ni(6)Ni(8) 2.468 (7)Ni(7) 2.472 (8)Ni(7) 2.413 (7)Ni(8) 2.468 (7)Ni(1) 2.657 (6)Ni(1)-Hf(2) $\times 2$ 2.776 (2)Hf(2) 2.851 (5)Hf(4) 2.657 (6)Ni(1) <td< td=""><td>Ni(9)</td><td>2.490 (7)</td><td>Ni(9)</td><td>2.516 (7)</td><td>Ni(10)</td><td>3.083 (7)</td><td>Ni(11)</td><td>2.431 (5)</td></td<>	Ni(9)	2.490 (7)	Ni(9)	2.516 (7)	Ni(10)	3.083 (7)	Ni(11)	2.431 (5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ni(10)	2.378 (7)	Ni(10)	2.662 (7)	Ni(11)	2.598 (5)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni(5)-Hf(1)	2.595 (6)	Ni(6)Hf(2)	2.676 (6)	Ni(7) - Hf(1)	2.639 (5)	Ni(8)-Hf(1)	2.652 (5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hf(2)	2.600 (6)	Hf(3)	2.680 (6)	Hf(2)	2.676 (6)	Hf(1)	3.274(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hf(2)	2.665 (6)	Hf(3)	2.718 (5)	Hf(2)	2.731 (6)	Hf(2)	2.679 (5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hf(3)	2.605 (6)	Hf(4)	2.624 (5)	Hf(3)	2.708(5)	Hf(3)	2.683(5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hf(3)	2.657 (6)	Ni(2)	2.745 (7)	Hf(4)	2.757 (6)	Hf(3)	3.089 (5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni(2)	2.670 (7)	Ni(2)	3.453 (7)	Ni(1)	2.723(7)	Ni(1)	2.760(7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni(4)	2.599 (7)	Ni(3)	2.713(7)	Ni(1)	3.308(7)	Ni(1)	2.832 (7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni(5)	3.399 (10)	Ni(3)	2.832 (7)	Ni(4)	2.533(7)	Ni(2)	2.594(7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni(7)	2.781 (7)	Ni(4)	2.545(7)	Ni(5)	2.781(7)	Ni(5)	2.468(7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni(7)	2.805 (8)	Ni(6)	2.460 (10)	Ni(5)	2.805(8)	Ni(5)	2.891 (7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni(8)	2.468 (7)	Ni(7)	2.729 (8)	Ni(6)	2.729(8)	Ni(7)	2.413(7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni(8)	2.891 (7)	Ni(9)	2.498 (7)	Ni(8)	2.413(7)	Ni(9)	2.506 (7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni(10)	3.006 (8)	Ni(11)	2.504 (5)	Ni(10)	2.678 (7)	Ni(10)	2.447(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni(9)—Hf(1)	2.657 (6)	$N_{i}(10) - H_{f}(1)$	2.657 (6)	$N_{i}(11) = H_{i}(2) \times 2$	2,776 (2)		(-)
Hi(3) 2.956 (5)Hi(3) 2.679 (6) $Ni(3) \times 2$ 2.783 (2)Hf(4) 2.792 (5)Hf(4) 2.664 (6) $Ni(3) \times 2$ 2.598 (5)Hf(4) 2.831 (5)Hf(4) 2.664 (6) $Ni(4) \times 2$ 2.431 (5)Ni(1) 2.490 (7)Ni(1) 2.378 (7)Ni(9) $\times 2$ 2.410 (5)Ni(2) 2.516 (7)Ni(2) 2.662 (7)Ni(3) 2.675 (7)Ni(3) 2.536 (7)Ni(3) 2.675 (7)Ni(4) 2.530 (7)Ni(4) 2.498 (7)Ni(3) 3.083 (7)Ni(6) 2.498 (7)Ni(4) 2.530 (7)Ni(8) 2.506 (7)Ni(5) 3.006 (8)Ni(11) 2.410 (5)Ni(7) 2.678 (7)Ni(8) 2.447 (8)	Hf(2)	2.861(5)	Hf(1)	3.426 (6)	$Hf(3) \times 2$	2.785(2)		
H(4) 2.792 (5)Hf(4) 2.664 (6)Ni(4) $\times 2$ 2.598 (5)Hf(4) 2.831 (5)Hf(4) 2.664 (6)Ni(4) $\times 2$ 2.431 (5)Ni(1) 2.490 (7)Ni(1) 2.673 (6)Ni(6) $\times 2$ 2.504 (5)Ni(1) 2.490 (7)Ni(1) 2.378 (7)Ni(9) $\times 2$ 2.410 (5)Ni(2) 2.516 (7)Ni(2) 2.662 (7)Ni(3) 2.536 (7)Ni(3) 2.675 (7)Ni(4) 2.435 (7)Ni(3) 3.083 (7)Ni(6) 2.498 (7)Ni(4) 2.539 (7)Ni(8) 2.506 (7)Ni(5) 3.006 (8)Ni(11) 2.410 (5)Ni(7) 2.678 (7)Ni(8) 2.447 (8)	Hf(3)	2.956(5)	Hf(3)	2.679 (6)	$Ni(3) \times 2$	2.508(5)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hf(4)	2.792(5)	Hf(4)	2.664(6)	$Ni(3) \times 2$ $Ni(4) \vee 2$	2.330(3)		
Ni(1) 2.490 (7)Ni(1) 2.378 (7)Ni(0) $\times 2$ 2.504 (5)Ni(2) 2.516 (7)Ni(2) 2.662 (7)Ni(3) 2.536 (7)Ni(3) 2.675 (7)Ni(4) 2.435 (7)Ni(3) 3.083 (7)Ni(6) 2.498 (7)Ni(4) 2.539 (7)Ni(8) 2.506 (7)Ni(5) 3.006 (8)Ni(11) 2.410 (5)Ni(7) 2.678 (7)Ni(8) 2.447 (8)	Hf(4)	2.831(5)	Hf(4)	2.673(6)	$Ni(4) \times 2$ $Ni(6) \times 2$	2.431(3)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni(1)	2.490(7)	Ni(1)	2.378 (7)	$Ni(0) \times 2$	2.304(3)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni(2)	2.516 (7)	Ni(2)	2.662 (7)	11(7) × 2	2.410(3)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni(3)	2.536(7)	Ni(2)	2.675(7)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni(4)	2.435(7)	Ni(3)	3.083 (7)				
$\begin{array}{ccccccc} Ni(8) & 2.506(7) & Ni(5) & 3.006(8) \\ Ni(11) & 2.410(5) & Ni(7) & 2.678(7) \\ & Ni(8) & 2.447(8) \end{array}$	Ni(6)	2.498 (7)	Ni(4)	2.539 (7)				
Ni(11) 2·410 (5) Ni(7) 2·678 (7) Ni(8) 2·447 (8)	Ni(8)	2.506 (7)	Ni(5)	3,006 (8)				
Ni(8) 2.447 (8)	Ni(11)	2.410(5)	Ni(7)	2.678 (7)				
			Ni(8)	2.447 (8)				

Fig. 2. The layer around $x \sim 0.25$ of the Zr_2Ni_7 structure projected on the (100) plane.

three rows of atoms parallel to the c' axis, one row of Ni atoms and two rows of Hf and Ni atoms in a 1:1 ratio. The Ni(9) atoms are situated between the two rows composed of Hf and Ni atoms. When one layer is stacked upon the other, the row of Ni atoms falls between and above the two rows of Hf and Ni atoms. The two rows of Hf and Ni atoms in the upper layer centre the row of Ni atoms in the lower layer.

The relationship between the Hf_8Ni_{21} -type structure and the structure of Zr_2Ni_7 determined by Eshelman & Smith (1972) can be visualized if the unit cell of Zr_2Ni_7 is transformed according to $\mathbf{a'} = -\mathbf{a}$, $\mathbf{b'} = \mathbf{b}$ and $\mathbf{c'} = \mathbf{b}$ $-\mathbf{c}$. With this transformation, the structure of Zr_2Ni_7 can be described as a stacking of two layers of atoms at $x \sim 0.25$ and $x \sim 0.75$ parallel to the (100) plane. Above and below the layer at $x \sim 0.25$, there are four Ni atoms at x = 0 and $x = \frac{1}{2}$. The layer at $x \sim 0.25$ is shown in Fig. 2. The layers at $x \sim 0.25$ and $x \sim 0.75$ are closely related to the layers in the Hf_8Ni_{21} -type structure. There is one straight row of Ni atoms and two rows of Zr and Ni atoms in a 1:1 ratio parallel to c'. If the Ni(9) atoms in the Hf₈Ni₂₁-type structure are shifted and placed in the row of Ni atoms, essentially the same types of layers occur in the two structures.

In the structure of Hf_8Ni_{21} the coordination number for the Hf atoms is 15 while the coordination numbers for the Ni atoms vary between 12 and 13. The various interatomic distances less than 3.5 Å are given in Table 2.

The author is deeply indebted to Professor Stig Rundqvist for valuable discussions and comments. Financial support from the Swedish Natural Science Research Council is gratefully acknowledged.

References

- BSENKO, L. (1978a). To be published.
- BSENKO, L. (1978b). Acta Cryst. B34, 3201-3204.
- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891–1898.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104– 109.
- ERSSON, N.-O. (1976). In Crystallographic Computer Programs, edited by J.-O. LUNDGREN. Report UUIC-B13-4-03. Univ. of Uppsala, Sweden.
- ESHELMAN, F. R. & SMITH, J. F. (1972). Acta Cryst. B28, 1594–1600.
- International Tables for X-ray Crystallography (1969). Vol. I, 3rd ed. Birmingham: Kynoch Press.
- KIRKPATRICK, M. E. & LARSEN, W. L. (1961). Trans. Am. Soc. Met. 54, 580-590.
- LUNDGREN, J.-O. (1976). Editor. Crystallographic Computer Programs. Report UUIC-B13-4-03. Univ. of Uppsala, Sweden.
- SVECHNIKOV, V. N., SHURIN, A. K. & DMITRIYEVA, G. P. (1967). Russ. Metall. Fuels, 6, 95–96.

Acta Cryst. (1978). B34, 3207-3210

The Crystal Structure of Hf₃Ni₇

By LARS BSENKO

Institute of Chemistry, University of Uppsala, Box 531, S-751 21 Uppsala, Sweden

(Received 25 May 1978; accepted 3 July 1978)

Hf₃Ni₇ crystallizes with a new triclinic structure type. The triclinic unit cell, space group $P\bar{1}$, contains two formula units and the cell dimensions are a = 6.5138 (11), b = 6.5890 (11), c = 7.6271 (10) Å, $\alpha = 104.87$ (1), $\beta = 104.60$ (3) and $\gamma = 112.71$ (1)°. The structure has been determined and refined from single-crystal three-dimensional X-ray diffraction data. Full-matrix least-squares refinement yielded a conventional R(F) value of 0.09. The structure can be regarded as a stacking of three slightly puckered layers parallel to the (011) plane. Hf₃Ni₇ is a high-temperature phase, stable from 1250 ± 20 to 1016 ± 3°C, where it decomposes eutectoidally into Hf₇Ni₁₀ and HfNi₃ (low-temperature).

Introduction

In the investigation of the Hf-Ni system in the region 65-80 at.% Ni, Bsenko (1978a) found a phase forming

peritectically from the melt and Hf_8Ni_{21} . No such phase exists in the Zr–Ni system, which is in agreement with the findings of Kirkpatrick & Larsen (1961). They also made some observations on the Hf–Ni system but